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A Comparison of the Analytic Hierarchy Process

and the Geometric Mean Procedure for Ratio Scaling

The development of analytical procedures and experimental techniques for

constructing ratio measurement scales has long been a major topic and important

challenge in psychophysics and other areas of psychology. The interest in ratio

scales is obviously related to their high level of invariance (unique up to a

similarity transformation) and the associated statistical operations they allow

one to perform (Stevens, 1946). To obtain ratio scales, Stevens and his colleagues "

(Stevens, Mack, & Stevens, 1960) developed the "cross modality matching" paradigm,

which was originally applied to variables with a corresponding physical continuum

and later generalized to social and other psychological stimuli (e.g., Lodge, 'a

1981). Although Stevens' techniques have been widely used in numerous areas

(e.g., Stevens, 1972, 1975; Lodge, 1981), their precise characterization is

still a topic of debate among measurement specialists (e.g., Shepard, 1981).

Following two decades of development of ordinal level scales, which culmi-

nated in the development of nonmetric multidimensional scaling, there has recently

been a renewed interest in the problem of ratio scale measurement. To a large

extent, the interest in this problem is due to the development of a new ratio

scaling procedure and its successful use in a variety of experimental and

practical situations. The most salient characteristic of this method was

apparently first discovered by Gulliksen (1959), but the procedure was fully

developed, investigated, described, and applied by Saaty (1977, 1980).

Saaty's Analytic Hierarchy Process

Consider a set of n stimuli with unknown scale values, s = (S ,..., S).

Following a process of pairwise comparisons, an n x n matrix of ratios, R, is

constructed such that

(1) rj = s i/si i,j=l,...n,

All the entries in R are positive, satisfying the reciprocity condition:

r = ir i . In reality, this constraint is artificially enforced because
j~i j~i-
typically only n(n-l)/2 judgments are obtained and the remaining ratios are

calculated by the reciprocal transformation and by assuming that r = 1

Saaty's procedure is based on a relatively simple and elementary property

of R: when postmultiplled by the vector of scale values, the result is a vector 1
, S

I ~ a . %~ . . 1 1 * 1 * 1
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related to the scale values by a constant. This constant turns out to be the

size of the matrix R. Thus,

(2) Rs - ns.

This formulation suggests that the unknown scale values can be obtained by an

eigenvalue-eigenvector decomposition of R. Saaty's solution to this problem

when the data are perturbed is to use the normalized right eigenvector associated

with the largest eigenvalue of R, denoted by Xx as an estimate of the scale

values.

The matrix R is said to be consistent if the ratios rj satisfy

(3) ri' j  r r ,krk,j  i,j,k=l,...n

for all i, J, and k. A consistent matrix is of unit rank. Moreover, its only

nonzero eigenvalue must be n (see Eq. 2). It can be shown that X > n when
max

consistency is violated. Therefore, Saaty recommends using the normalized

difference

(4) 1 = (aX-n)/(n-l)

as a measure of inconsistency. If R is consistent, .i = 0; if not, W is monotoni-

cally increasing in the magnitude of departure from consistency (for more details

of the properties of this method see Saaty, 1977, 1980).

Saaty's analytic hierarchy process (AHP) has attracted much attention, having

been successfully applied in such diverse areas as marketing (Wind & Saaty, 1980),

political science (Saaty & Bennett, 1977), and the measurement of subjective

probabilities (Yager, 1979). However, the AHP has had its share of criticism.

In particular, Johnson, Beine, and Wang (1979) have pointed out that for inconsis-

tent matrices of order n > 4 the solution is not invariant under transposition.

In other words, the right eigenvector of R' (i.e., the left eigenvector of R) is

not necessarily the reciprocal of the right eigenvector of R. This may cause

difficulties in the interpretation of the scale values (see also Budescu, 1984).

The Geometric Means Procedure

Another criticism was leveled by Williams and Crawford (1980), who argued

that, unlike most estimation procedures, Saaty's procedure does not optimize a

well defined loss function. Moreover, it requires complex calculations as the

maximal eigenvalue and the associated eigenvector are calculated by an iterative

technique. Therefore, Williams and Crawford proposed an alternative procedure,

Of
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called the geometric means procedure, which is invariant under transposition

and can easily be calculated by hand.

It has long been recognized that the geometric means (GMs) are least

squares estimates of the logarithms of the scale values (e.g., Torgerson, 1958). .

Williams and Crawford (1980) have shown that if the true scores are perturbed N
2by independent lognormally distributed errors with zero mean and variance a '

the GMs are also maximum likelihood estimates of the scale values (for a theore-

tical justification of the lognormal distribution of errors in the judgment of

dissimilarities see Ramsay, 1977). To measure the inconsistency of R, Williams

and Crawford proposed using the residual mean square

n n
(5) S2 Z Z [kn(r i,j)-9,n(GM i/GM )]2/(n-l)(n-2),

i=1 j=l ii

2 2 2where S is an estimate of c . As in Eq. 4, S 0 if R is consistent. As the
2 .departure from consistency increases, S increases monotonically.

A Comparison Based on Perturbed Scale Values

How do the two scaling procedures compare? For a consistent judgment

matrix of any order or for any reciprocal matrix of order n < 3, the eigenvector

of R (associated with Amax) and the vector of row GMs are equal except for a

similarity transformation. The procedures differ, however, when consistency

is violated. To compare the two procedures, Williams and Crawford conducted

a Monte Carlo study in which reciprocal matrices of order 5, 7, and 10 were

perturbed by multiplying each ratio S./S. by an error eij. Two types of errors

were investigated. In the first, the errors e were drawn from a lognormal

distribution with zero mean and variance a2  In the second, the errors were

drawn from a population of ratios of uniform random variables with the same

mean and variances as in the first case. Five values of a were examined, and

each condition was repeated 1000 times. In all cases the GM procedure outper-

formed Saaty's procedure according to both the least squares and the log least

squares criteria. Moreover, the relative advantage of the GM procedure increased

with both the size of the judgment matrix R and the variability of error.

Table 1, which is taken from Tables 2 and 3 of Williams and Crawford, shows the

percentage of cases (matrices) in which the GM procedure outperformed the AHP. A
In the "almost consistent case" (top row of Table 1), when the variability

of error is very small, the two solutions are equally good. But as the varia-

bility of error and the size of the response matrix increase, the GM's advantage %

IN'I
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Table 1

Percentage of Cases in which the GM Procedure Provides

Better Least Squares Estimates of Scale Values than the AHP I

Lognormal Errors Ratio of Uniform Errors

n n
2 5 7 10 Total 5 7 10 Total

.01 52 51 50 51.00 51 49 50 50.00

.16 54 56 57 55.67 51 52 53 52.00

.64 50 54 57 53.67 57 62 66 61.67

1.00 56 62 70 62.67 59 68 73 66.67

1.69 58 66 71 65.00 71 81 92 81.33

Total 54.00 57.80 61.00 57.60 57.80 62.40 66.80 62.33

Note: Each cell is based on 1000 cases.

over Saaty's procedure is enhanced. Table 1 suggests that nothing is lost by

using the GM procedure in cases where Saaty's AHP works well. There seems to be

a real potential gain in employing the GM procedure in other more erratic cases.

A particularly attractive feature of Saaty's AHP is the availability of a

consistency index p (Eq. 4) which differentiates between judgment matrices that

can be maintained and interpreted, and judgment matrices that must be rejected

as "randomly generated data." As a rule of thumb, Saaty (1977) proposed to fix

p at 0.1. Later (1980, 1983), he recommended using a consistency ratio denoted

by C.R. and defined by

(6) C.R. =

where In is an empirical measure computed from Eq. (4) for 500 randomly generated

reciprocal matrices of order n. The new rule of thumb (presumably for 1-9 re-

sponse scales) is to accept only judgment matrices for which C.R. < 0.2.

Although Williams and Crawford have suggested the statistic S 2 as a measure %

of inconsistency for the GM procedure, no corresponding rules are available for

its use. This, perhaps, reflects the shortage of applications of the GM proce-

dure. More importantly, because W and S2 are based on two different models of

scaling matrices of ratio judgments, and do not necessarily reflect the same

properties of the data, it is still an open question how the two procedures compare

I'
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in the null case--when the data are known to be random (rather than consistent .

judgments perturbed by error). e

Objectives

A major purpose of the present note is to contrast and evaluate the two P

scaling procedures in the null case and provide guidelines for their use with

real data. In this case both scaling procedures are expected to reject by

means of ]i and S 2 the null hypothesis of consistency. The methodology employed .

in the present paper is very similar to that used by Saaty (1977, 1980): a '

large number of reciprocal matrices consisting of random entries are generated,

solutions and indices of inconsistency are calculated, and the rejection rules

are compared to each other.

A second purpose of this note is to generalize the findings from the

comparison of the two scaling procedures to a nonnumerical method of obtaining

ratio judgments. Saaty's procedure obtains directly numerical estimates of%

ratios in the tradition of Stevens' magnitude estimation. Furthermore, Saaty.'

strongly recommends restricting the response scale to the positive integers .

1 through 9 and their reciprocals (a total of 17 possible different values). % .4

Another equally popular experimental procedure for eliciting ratio judgments

is the "constant sum" method (e.g., Torgerson, 1958) in which a judge is N7

required to divide a constant number of units between two stimuli in accordance .

with their ratio. For example, a 90:10 allocation of 00 units reflects a

ratio of 90/10 = 9, and a 50:50 division gives rise to a ratio of . In cer-

tain applications, such as encoding subjective probabilities, it is preferable .

to avoid using numerical responses because of their inherent bias. Instead, V.

graphical methods such as placing a sliding marker along a bounded straight %

line or adjusting a two-color probability wheel are recommended (e.g., Spetzler %

& Stael on Holstein, 1975; Wallsten & Budescu, 1983). Then the ratio judg-

ments can be derived directly from the relative lengths (areas) of the two

segments of the line (wheel) as in the direct estimation method.

When graphical techniques are employed, the derived ratio judgments are

not necessarily identical to those obtained from direct ratio judgments. In

particular, they are not necessarily integer values (there is no way to divide

100 units to obtain a 5:1 ratio), and they are likely to yield extreme ratios

near the end points (e.g., 100 units may yield ratios as high as 99 and 49)

and more densely clustered ratios elsewhere. Because the scale values and,

. .. .. ........ .- %
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consequently, the two inconsistency measures are sensitive to the response scale

(see Saaty, 1980), we plan to compare the two scaling procedures for the "graphi-

cal constant sum" method as well.

Method

A Monte Carlo study was conducted to compare the AHP and GM procedures for

scaling ratio judgments. Thirty different conditions were generated by factori-

ally combining three independent variables:

1. The number of stimuli to be scaled: n = 4,6,8,10,12.

2. The experimental method for eliciting ratio judgments: direct estimation

and constant sum.

3. The number of different responses allowed: k = 17,25,99. V

The third factor of the present design reflects an assumption regarding the

level of differentiation and precision that the judge may achieve when selecting

a particular response. For the direct estimation method the three values of k

imply that the integers 1-9 (as suggested by Saaty), 1-13, 1-50 and their reci-

procals are used, respectively. For example, if k= 17 and the (i,j) cell of R

is considered, an integer x is chosen randomly from the integers 1,...,9 such

that rj,i =x and ri =/x.

When the constant sum method is employed, it is assumed that the judge can

divide the total number of units specified by the experimenter (or the total

length of a line) in only a finte number (k) of equally spaced categories. Each

response is assumed to be the mid-point of an interval of unit length. The func-
tion relating the numerically calculated ratios r.. to the nonnumerical responses

1J

is convex. For example, suppose a line is divided into k=17 equally spaced

intervals. If the judge places the marker on the 9th interval, r.. = 8.5/8.5 = 1.
lj

A marker placed on the lth interval yields a ratio of 10.5/6.5 = 1.615, and one

placed on the right-hand (17th) interval yields the highest possible ratio of

16.5/0.5 = 33. The first two levels of the third factor (k=17, 25) are represen-

tative of the constrained response scales used in the psychological literature.

The third level (k=99) is included as a reasonable approximation to the uncon-

strained situation in which the judge may select any real number in making his

or her judgment.

For each of the 30 conditions in the 3-way factorial design described above,

1000 matrices were generated by independently choosing n(n-l)/2 uniformly distri-

buted integers within the range of values dictated by k and the method for

,%

A7. Z-
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eliciting ratio judgments. The numbers were randomly placed in the cells of

an n x n matrix (but excluding the diagonal entries, which are all l's), and

their reciprocal values were assigned to the corresponding transposed positions.

For each matrix Rq (q=l,...,l000) in each of the 30 conditions four solutions

were obtained:

1. The geometric means of R 's rows: s ,
q -gr

2. The right eigenvector of R : srq'
3. The left eigenvector of R :

q 9_q,
4. The geometric mean of the right and left eigenvectors of R : s .

q -mq
Only the first and fourth solutions are invariant under transposition of R .

q
The estimated scale values under each model and the two measures of inconsis-

tency ji and S2 were then computed and printed.

Results

Table 2 presents a summary of several characteristics of the sampling

distributions of w and S2 for the direct estimation method. For both statistics,

each row of Table 2 displays two measures of central tendency (mean and median),

a measure of variability (standard deviation), and a measure of skewness defined

as (e.g., Nichols & Gibbons, 1979):

= 3 (Mean - Median) / standard deviation.

c takes on values between -3 and 3; it is centered around 0 when the distribu-

tion is symmetric.

Table 3 shows a similar summary for the constant sum method of eliciting

ratio judgments.

Both Tables 2 and 3 show that the two location parameters for V increase

in both k and n, whereas for S2 they only increase in k. For a given k, and

regardless of which method is used to elicit responses, W increases on the

average as the number of stimuli grows, whereas S2 remains unchanged. For both 6.

v' and S2 and for both methods, the standard deviations decrease in n and, with

some exceptions in Table 2, increase in k. Inspection of both the variability

and skewness measures shows that all 60 sampling distributions become more

stable (i.e., less variable) and symmetric as the number of stimuli increases.

A comparison of Tables 2 and 3 demonstrates that both effects are stronger for

the direct estimation case.

I
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Table 2

Summary Statistics cf the Sampling Distributions

of o and S2 for the Direct Estimation Method

Is 2-

k n Mean Median S.D. Skewness Mean Median S.D. Skewness

4 0.895 0.653 0.824 0.881 2.575 2.176 1.886 0.635

6 1.458 1.316 0.774 0.550 2.718 2.638 1.071 j.224

17 8 1.615 1.548 0.583 0.345 2.602 2.566 0.702 0.154

10 1.764 1.740 0.464 0.155 2.628 2.601 0.533 0.152

12 1.823 1.817 0.377 0.048 2.585 2.578 0.412 0.051

4 1.264 1.084 0.925 0.584 3.472 3.223 2.156 0.347

6 1.840 1.870 0.630 -0.143 3.477 3.527 1.044 -0.144

25 8 2.090 2.092 0.448 -0.013 3.527 3.538 0.716 -0.046

10 2.231 2.236 0.318 -0.047 3.544 3.537 0.490 0.043

12 2.308 2.314 0.263 -0.068 3.550 3.568 0.390 -0.138

4 5.473 4.329 4.513 0.760 9.265 8.505 5.753 0.396

6 8.680 8.883 2.877 -0.212 9.537 9.703 2.760 -0.180

99 8 9.649 9.735 1.799 -0.143 9.487 9.510 1.648 -0.042

10 10.269 10.273 1.293 -0.009 9.606 9.619 1.174 -0.033

12 10.541 10.556 1.039 -0.043 9.540 9.575 0.911 -0.155

P%
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Table 3

Summary Statistics of the Sampling Distributions
of 11 and S 2 for the Constant Sum Method 1

S 2

k n Mean Median S.D. Skewness Mean Median S.D. Skewness

4 1.110 0.760 1.199 0.876 2.996 2.440 2.319 0.719

6 1.704 1.418 1.127 0.775 2.929 2.756 1.291 0.402 -

17 8 1.939 1.805 0.846 0.475 2.842 2.774 0.820 0.249

10 2.167 2.055 0.736 0.457 2.868 2.842 0.650 0.120

12 2.291 2.228 0.608 0.311 2.859 2.837 0.506 0.130

4 1.159 0.743 1.309 0.953 3.056 2.395 2.456 0.807

6 1.768 1.486 1.194 0.709 3.003 2.829 1.336 0.391 ".4

25 8 2.140 1.966 1.025 0.509 2.975 2.872 0.886 0.349

10 2.140 1.966 1.025 0.509 2.975 2.872 0.886 0.349

12 2.582 2.488 0.791 0.357 2.995 2.967 0.566 0.148

4 1.306 0.787 1.636 0.952 3.286 2.518 2.847 0.809

6 2.115 1.563 2.122 0.780 3.228 2.931 1.637 0.544

99 8 2.621 2.139 1.815 0.797 3.195 3.023 1.113 0.464

10 2.986 2.633 1.562 0.678 3.224 3.166 0.853 0.204

12 3.300 3.035 1.431 0.556 3.208 3.168 0.662 0.181

I
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To illustrate the increasing stability of the sampling distributions as

the number of stimuli increases, Figure 1 portrays 10 sampling distributions

under the direct estimation for k-17 (the response scale advocated by Saaty)

and n - 4, 6, 8, 10, and 12. The right panel of the figure displays the sam-

pling distributions for the AHP and the left panel for the GM procedure. The

reduction in variability and skewness is evident in the figure. Tables 4 and

5 present the critical values of the null sampling distributions (at a = 0.10,

0.05, and 0.01) for testing the null hypothesis of randomly generated responses.

Because both V and S2 vanish when the ratio judgments are consistent, the null

hypothesis is rejected (and the derived scale values may be safely accepted

and properly interpreted) at a given level whenever a value smaller than that

listed in the appropriate table is obtained.

Because Tables 4 and 5 are most important for practical purposes, it is

desirable to generalize their results to values of n and k other than those

examined in the present study. We have achieved this purpose by fitting rela-

tively simple multiple regression equations based on n, k, or some monotonic

*" transformations of these two parameters. For the constant sum method, the

critical values of the sampling distribution of U are approximated by

F = -1.2043 + 0.0979n + 0.6719 log(n) + 0.0008k,
.10

F = -0.9728 + 0.l150n + 0.4243 log(n) + 0.0003k,
.05

F = -0.4143 + 0.1715n = 0.1815 log(n),
.012

whereas the critical values for the sampling distribution of S are given by:

F = -2.7024 - 0.1923n + 2.9253 log(n) + 0.0006k,
.10

F = -2.6871 - 0.1351n + 2.5866 log(n) + 0.0003k,
.05

F M -1.8826 + 0.0411n + 1.3067 log(n) + 0.0006k.
.01

The six equations above fit the Monte Carlo results extremely well; they all

have adjusted squared multiple correlations of at least 0.99, and all residuals

are less than 0.085.

For the direct estimation procedures, the critical values of 11 are approxi-

mated by:

2
F.10 = -3.1870 + 0.9 711n - 0.0325k - 0.0605n + 0.Ol09nk

F.05 = -2.1582 + 0.62 70n - 0.0355k - 0.0429n 2 + 0.0144nk,

F = -0.4382 + 0.174 4n - 0.0511k - 0.0155n + 0.Oll6nk.
.01

And the critical values for S are approximated by

F 0 -4.5034 + 1.0793n + 0.0688k - 0.0620n2 + 0.0062nk - 0.0005k2

.10
F.05 " -4.2697 + 1.00 4 4n + 0.0544k - 0.0567n2 + 0.O065nk - 0.0005k2 ,

F -3.3187 + 0.7788n + 0.0190k - 0.0434n2 + 0.0077nk - 0.0003k.
.01 P

~~ ~~.P6~'P .'. a ,.aa .*.
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Table 4

Critical Values of the Sampling Distributions

of p and S2 for the Direct Estimation Method

S 2

k n .10 .05 .01 .10 .05 .01

4 0.148 0.090 0.035 0.560 0.346 0.136

6 0.596 0.471 0.237 1.403 1.177 0.756

17 8 0.903 0.804 0.581 1.701 1.577 1.220

10 1.174 1.037 0.847 1.952 1.783 1.482

12 1.324 1.211 1.048 2.039 1.940 1.721

4 0.246 0.153 0.048 0.896 0.577 0.189

6 0.944 0.773 0.414 2.055 1.749 1.065

25 8 1.488 1.348 1.044 2.601 2.353 1.869

10 1.832 1.715 1.347 2.916 2.750 2.313

12 1.962 1.881 1.676 3.071 2.890 2.560

4 0.769 0.569 0.204 2.535 1.926 0.744

6 4.841 3.039 1.346 5.716 4.762 2.783

99 8 7.298 6.528 5.068 7.328 6.543 5.433 L
10 8.634 8.134 7.118 8.054 7.583 6.860

12 9.171 8.755 8.057 8.365 7.934 7.155

P.

a,.
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Table 5

Critical Values of the Sampling Distributions_

of P and S2 for the Constant Sum Method

S1

k n .10 .05 .01 .10 .05 .01

4 0.164 0.103 0.036 0.610 0.393 0.142

6 0.604 0.487 0.276 1.410 1.167 0.675

17 8 0.999 0.835 0.534 1.856 1.604 1.118

10 1.301 1.56 0.944 2.036 1.889 1.632

12 1.553 1.409 1.188 2.210 2.094 1.851

4 0.160 0.095 0.032 0.593 0.363 0.125

6 0.620 0.479 0.238 1.455 1.170 0.655

25 8 1.033 0.874 0.604 1.891 1.641 1.224

10 1.367 1.184 0.887 2.151 1.933 1.563

12 1.671 1.445 1.201 2.288 2.101 1.821

4 0.166 0.094 0.034 0.620 0.359 0.134

6 0.601 0.455 0.270 1.410 1.144 0.698 %

99 8 1.032 0.830 0.609 1.871 1.594 1.245

10 1.456 1.237 0.952 2.173 2.002 1.646

12 1.784 1.534 1.122 2.396 2.202 1.863

/

.UU,

' % ", ' ' " " , ° " % -" , - , L : ,%, % "". '" ," " " i 
" .

-- J - . v
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* Table 6

Measures of Agreement Between 
P and S2

Direct Estimation Constant Sum

k n T P P P T P p P
.10 .05 P01 . 10 . 05 .01

4 .972 99 100 100 .971 99 100 80

6 .876 92 92 100 .890 95 94 90

17 8 .819 85 76 80 .812 90 84 100

10 .797 81 80 90 .763 75 74 80

12 .794 80 78 60 .702 77 80 70

4 .953 99 100 100 .969 99 100 100

6 .841 90 90 90 .874 92 92 90

25 8 .835 83 72 80 .809 90 86 90

10 .807 80 76 90 .784 75 82 90

12 .820 81 82 70 .763 63 60 80

4 .925 97 96 100 .971 100 98 90

6 .736 87 86 90 .881 93 92 100

99 8 .704 69 72 50 .806 85 84 80

10 .707 67 58 80 .755 83 82 80

12 .714 70 66 20 .728 72 76 80
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The fit of these six equations is not as impressive as the fit reported

above for the constant sum method. All the adjusted squared multiple corre- %

lations exceed 0.97, but some of the residuals for the case k=99 seem larger

than desired.

The agreement between w and S is summarized by several measures in

Table 6. The two columns labelled T, one for each method, report the values

of Kendall's rank correlation between the 1000 pairs of W and S2 calculated

separately for each of the 30 conditions. It is well known (Marascuillu &

McSweeny, 1977) that T can be provided a probabilistic interpretation: it is

the difference between the probabilities of finding a concordant and a dis-

cordant pairs of values under random sampling. The other six columns focus

on the regions of rejection defined in Tables 4 and 5. Specifically, they

present the percentage of cases for which the null hypothesis of randomly

generated judgments is rejected by S2 and w for i = 0.10, 0.05, and 0.01.

It can safely be concluded from Table 6 that the agreement between p

and S2 is quite high; the mean rank order correlation between 0 and S2 is

0.813 for the direct estimation and 0.832 for the constant sum method, and

the corresponding mean percentage of agreement at a = 0.05 is 81 and 86,

respectively. Table 6 shows that the two measures of inconsistency are in

closer agreement in the constant sum method. This slight advantage of the

constant sum over the direct estimation method is attributed to the results

obtained for k=99. Table 6 further shows a strong effect of the number of

stimuli--as n increases the agreement between p and S2 declines.

Following our examinatiori of the agreement between 11 and S , we turn

next to investigate the relations between the four solutions to the scaling

problem: S S S, and S.

Tables 7 and 8 present the median Pearson product moment correlations

between any two solutions across the 1000 replications. Table 7 shows the

median correlations for the direct estimation method, whereas the corresponding

results for the constant sum method are presented in Table 8. All the corre-

lations are high, indicating that the four solutions yield similar scale

values in the null case as well as in the unidimensional perturbed case

(Williams & Crawford, 1980). An examination of the two tables reveals several

effects. Here again, as in Table 6, there is a strong and consistent inverse

relationship between the number of stimuli (n) and the degree of association

between the various pairs of solutions. Also similar to Table 6, there are

- - - - - - - - - - - - - - - -
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Table 7 N

Median Correlations* Between the Four A

Solutions for the Direct Estimation Method

k n S xS, S xS S xS S xS S xS S xS
g g m g r z m r m r

4 987 997 989 994 979 996

6 918 970 914 955 791 955

17 8 864 951 857 923 678 921

10 828 931 829 911 592 891

12 795 923 811 893 517 863

4 991 996 990 997 988 998

6 922 969 919 965 805 945

25 8 893 962 897 946 733 920

10 882 961 883 933 686 906

12 888 962 880 935 691 906

4 994 996 987 999 991 997

6 884 939 858 958 734 922

99 8 849 917 825 939 674 896

10 835 913 821 928 632 890

12 846 922 818 924 635 887

Decimal points are omitted.

no systematic differences among the correlations due to the response scale (k).

A comparison of Tables 7 and 8 shows that under the direct estimation method

the correlations between the solutions are slightly higher than under the con-

stant sum method.

When the six correlations within a condition (row) are compared to one

another in either of the two tables, an interesting pattern emerges. In all the

30 cases examined the lowest correlation is between the left and right eigenvec-

tors (S *S), and, with the exception of k=99 in Table 7, the highest correlation

is between the geometric mean solution and the geometric mean of the two eigen-

vector solutions (S *S ). It may be recalled that of the four solutions, only-g -m

S and S are invariant under transposition of the judgment matrix R.-g -m

"Ai

~ P V ~A p ~ ~ ~* A' . ~
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Table 8

Median Correlations* Between the Four

Solutions for the Constant Sum Method

n S xS S xS S xS SxS S xS S xS
SxS m g r i r m r

4 987 996 988 993 977 996

6 917 970 913 945 789 958

17 8 852 940 834 896 627 922

10 814 922 791 881 538 892

12 765 895 754 864 479 867

4 986 996 986 994 975 995

6 914 972 915 943 789 962

25 8 855 940 817 844 605 920

10 808 909 796 869 535 899

12 768 832 735 841 431 868

4 926 976 934 945 845 995

6 918 970 912 941 788 960

99 8 834 931 822 876 586 927

10 791 896 745 824 479 903

12 751 852 663 791 869 876

Decimal points are omitted.

Discussion

The results of the present study must be discussed from two perspectives,

the practical and the methodological. At the practical level, the results

e. provide a much needed service to those who employ ratio scaling procedures
routinely in their work and who are often concerned with the reliability and

consistency of their data. The results presented in Tables 2 through 5 provide

these researchers a sound basis for detecting inconsistent judgments and

subjects. They supply decision rules for accepting or rejecting judgment

matrices for both the AHP and GM procedures. In the former case, we contend

that use of the traditional approach to hypothesis testing, in which the null

hypothesis is rejected with a predetermined probability of type I error, is

a Ali-
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superior to any of the rules of thumb advocated by Saaty. In the latter case,

our results fill a gap in the long line of psychometric studies on the proper-

ties of the geometric means.

Like any other simulation, our results are limited to those combinations

of parameters tested. As such, they lack the generality achievable by a theore-

tical development. However, the values of n and k employed in the present study

are representative of the choices usually encountered in applications, so that

many users should find our tables useful. Those using different response scales

and a larger number of stimuli will benefit from the approximation formulas

developed for the critical points of the sampling distributions. Undoubtedly,

these formulas may be further refined in similar studies coverning a larger

range of parameter values.

We point out to the more conservative user that the results in Tables 2

and 3 can be used to approximate the mean and variance of the sampling distribu-

tions which, in conjunction with Tchebycheff's inequality, could be used to

determine more conservative decision rules. For example, in the direct estima-

tion method the mean and standard deviation of S2 can be approximated by

= 1.2259 + 0.0129n + 0.0825k,

((S2) = [2.440 - 0.335n + 0.006k + 0.016n - 0.O01nk]

Both equations fit the data well (Radj. > 0.975). Similar approximations can

be generated for other cases.

At a more general methodological level, we conclude that there is a very

high level of agreement between the AHP and GM procedures in the null case. We

base this conclusion on high correlations between the estimated scale values

(Tables 7 and 8), the large concordance between the rank orderings of the

various matrices by means of v and S2 , and the high agreement between the two

rejection rules for various levels of a (Table 6). It was pointed out in the

introduction that one interpretational problem of the AHP stems from its lack

of invariance under transposition of R. The magnitude of this problem is well

documented in Tables 7 and 8, where the right and left eigenvectors are shown

to intercorrelate lower than any other pair of solutions. This finding rein-

forces the warning of Johnson, Beine, and Wang (1979) regarding the use of the

right eigenvector. It is reassuring to note that in the same two tables the

highest correlations are typically those between the two invariant solutions.

' '' °.v ° , ' ;-' ' , ' , - .-? -',, " ,," '' ; ; - 'i" < : .'. Sd.
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When our results are considered in conjunction with the findings of

Williams and Crawford (1980) and the objection raised by Johnson, Beine, and

Wang (1979), a strong case can be made in favor of the GM as a better and

more convenient procedure than the AHP for scaling pairwise ratio judgments.

In the null case as well as in the consistent case, the two procedures are

practically indistinguishable. But the geometric treans are easier to calcu-

late and interpret, and they recover the "true" scale values with higher

accuracy in the presence of measurement error.
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